
P1: VENDOR/GDX/GEC P2: GCO/FOM/GCQ/GCY QC:

International Journal of Theoretical Physics [ijtp] PP131-301577 May 14, 2001 16:29 Style file version Nov. 19th, 1999

International Journal of Theoretical Physics, Vol. 40, No. 7, 2001

Conformally Invariant Klein-Gordon Equation
in Kaluza-Klein Theory
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Liu and Wesson discussed the Klein-Gordon scalar equation in a 5D manifold. We
generalize Liu’s discussions from the minimally coupled case to the conformally coupled
case and discuss further the variation ratio of a particle mass.

1. INTRODUCTION

In order to unify gravity and electromagnetism, Kaluza and Klein general-
ized Einstein’s general relativity to 5D mainfold (Bailin and Love, 1987). Al-
though Kaluza-Klein theory hasn’t succeeded, it gives us useful enlightenment
in generalizing some physical theories in 4D to high dimension to obtain some
useful physical conclusions. It has been developed and applied in many aspects
(Ma, 1995). All kinds of high-dimensional theories developed for different aims
are called Kaluza-Klein theory.

In the 1980s, Wesson proposed a new variable gravity, namely, a 5D space-
time-mass theory (Wesson, 1984). Using dimensional analysis, Wesson introduced
the fifth coordinatex4 = Gm/c2 (c is velocity of light,G is Newton gravitational
constant, andm is the rest mass) besides the 4D space–time coordinates. Thus
matter itself is brought into a geometrical formalism. In this theory, the test mass
of typical particle may change with time and position; this embodies the spirit
of Mach’s principle in the sense that inertial mass depends on the distribution of
matter in the universe (Ma, 1990). Space-time-mass theory has been studied in great
depth (Ma, 1990a, 1991; Overduin and Wesson, 1997; Wesson, 1999). Besides this
way of realizing variable gravity by the extra dimension, Liu and Wesson recently
generalized the 4D Klein-Gordon equation to 5D and realized variable gravity
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(variable mass) by the coupling between the scalar field and the gravitational
field (Liu and Wesson, 2000). Their work was based merely on the minimally
coupled case, and didn’t discuss in detail theoretical predictions and astrophysical
observations. In consideration of the special significance of conformal invariance
in theoretical physics (Birrell and Davies, 1982; Nazlikaz and Padmanabhan, 1983;
Wald, 1984), the present paper generalizes the minimally coupled case to the con-
formally coupled case, discusses the variable mass and compares the theoretical
value with observational data of astrophysics.

2. GENERALIZATION OF KLEIN-GORDON EQUATION IN 5D

First, generalize the Klein-Gordon equation in flat space–time to curved
space–time in a straightforward way. We use natural units in whichc = h = 1
and let lower-case Greek letters run 0, 1, 2, 3 (for time and space). In 4D flat
space–time, the conventional Klein-Gordon equation is

ηαβψ,αβ +m2
0ψ = 0 (1)

Hereηαβ = diagonal (+1,−1,−1,−1) is the matric of Minkowski space,m0 is
the mass of a particle,ψ is the 4D wave function. Equation (1) may be obtained
from the Lagrangian density

l (x) = 1

2

(
ηαβψ,αψ,β −m2

0ψ
2
)

(2)

by constructing the actionS= ∫ l (x) d4x and demandingδS= 0. Formally, the
scalar field equation in curved space–time proceeds in close analogy to the
Minkowski space case. The Lagrangian density is

l (x) = 1

2
[−g(x)]1/2

{
gαβ(x)ψ(x),αψ(x),β −

[
m2

0+ ξR(x)
]
ψ2(x)

}
. (3)

Hereξ is a numerical factor andR(x) is the Ricci scalar curvature. The coupling
between the scalar field and thegravitationalfield is represented by the termξRψ2.
The scalar field equation is

ψα
;α +m2

0ψ + ξR(4)ψ = 0, (4)

whereR(4) is the 4D scalar curvature. Two value ofξ are of particular interest:
the minimally coupled case,ξ = 0, and the conformally coupled case,ξ = 1/4
[(n− 2)/(n− 1)]. Heren is the space–time dimension.

Second, generalize the conformally coupled Klein-Gordon equation to 5D.
Liu and Wesson generalized the 4D Klein-Gordon equation to 5D for the minimally
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coupled case. They pointed out that there are two obvious candidates for 5D
generalization of (4), namely (Liu and Wesson, 2000)

9A
;A +m2

09 = 0 (5)

9A
;A = 0 (6)

where upper-case Latin letters run 0, 1, 2, 3, 4, and9A = gAB9,B. However they
preferred (6) to (5) in order to obtain variable mass by hiding the mass in the extra
dimension. Considering the conformally coupled case besides their arguments, we
choose the Klein-Gordon equation in 5D Riemannian space

9A
;A + ξR(5)9 = 0 (7)

where R(5) is the 5D scalar curvature andξ = 1/4[(n− 2)/(n− 1)] = 3/16,
n = 5.

3. GENERAL EXPRESSION OF A PARTICLE MASS

In this section we reduce the 5D Klein-Gordon equation (7) to the massive
4D Klein-Gordon equation (4) and thereby obtain a general expression for the
massm of a test particle. Consider the line element

dS2 = gAB dxA dxB = gαβ dxα dxβ − φ2 dl2 (8)

Heregαβ is the metric of 4D Riemannian space,gαβ = gαβ(xα, l ) andφ = φ(xα, l ).
Introducing the 5D Christoffel simbol0C

AB and the covariant derivative, we
have

9A
;A +

3

16
R(5)9 = gAB

(
9, AB − 0C

AB9,c
)+ 3

16
gABRAB9

= gαβ
(
9,αβ − 0λαβ9,λ

)+ 1

2
gαβg44gαβ,49,4+ g449,44

+ 1

2
g44gλαg44,α9,λ − 1

2
g44g44g44,49,4+ 3

16
R(4)9

+ 3

16
gαβR4

α4β9 +
3

16
g44Rα4α49 (9)

However, the first term on the right-hand side is9α
;α. From (7) we obtain the

4D Klein-Gordon equation with extra terms derived from the fifth dimension that
define an effective 4D mass

9α
;α +m29 + 1

6
R(4)9 = 0 (10)
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m2 ≡ φ−29−1

[
φgαβφ,α9,β +

(
φ−1

∗
φ −1

2
gαβ

∗
gαβ

) ∗
9 − ∗∗9

]
+ 1

48
R(4)+ 3

16
gαβR4

α4β −
3

16
φ−2Rα4α4 (11)

Here an overstar denotes the partial derivative with respect tox4 = l . Expres-
sion (11) expresses the effective 4D mass with 5D wave function9 and the coef-
ficient of the metric. In general the massm= m(xα, l ) is variable, which depends
on both the space–time coordinates and the extra coordinate. In order to gain the
constant rest mass in Minkovski space (gαβ = ηαβ , φ = 1), we may restrict the
wave function9 : 9 = 9(xα) eimol . This indicates that the scalar field9 still
depends on the fifth coordinatel by the phase factoreimol .

4. TWO TYPICAL EXAMPLES

Consider the two most significant solutions in gravity: the static and spheri-
cally symmetric solution, and the Friedman cosmological solution. The most im-
portant and the most persuasive examinations in general relativity have also been
carried out under the two circumstances, and have been supported by experiments
and observational data on astrophysics. Therefore, any generalization of general
relativity should first be examined under these circumstances. We will take the
two cases for examples, but employ a new approach slightly different from that
employed by Liu and Wesson.

First, consider the well-known line element describing the static and spheri-
cally symmetric gravitational field (Wesson, 1999).

dS2 = Aa dt2− A−a−b dr2− A1−a−br 2 dÄ2− Ab dl2

A(r ) = 1− 2µG/r

1 = a2+ ab+ b2 (12)

Hereµ and one ofa or b are parameters, which are determined by observations.
The casea = 1, b = 0 reduces (12) to the 4D Schwarzschild solution plus an extra
dimension, in which the mass of a particlem= m0 is constant (This conclusion is
obvious because Einstein theory is an invariable gravity),µ is the central mass, and
Kaluza-Klein theory is degenerated into Einstein theory. It implies that 4D Einstein
theory with matter is embedded in 5D Kaluza-Klein theory for vacuum. In order
to gain the expression for the mass of a test particle, we adopt the approximate
solution9(x, l ) = Aω eimo(l−t), whereω is a parameter, namely the scalar field
wave function9 is viewed as a plane wave propagating in the fifth coordinate,
and describes a spin-0 particle in the static and spherically symmetric gravitational
field. Since we are mainly interested in properties of the Klien-Gordon equation
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in weak field, it can be verified that the wave function9 satisfies Eq. (7) in first
approximation. The mass by (11) and (12) is

m2 = A−bm2
0− 2br−2Aa+b−2

(
µG

r

)2

+ 1

48
R(4)

+ 3

16
gαβR4

α4β −
3

16
A−bRα4α4 (13)

We find that the massm= m(r ) may vary withr in the static and spherically sym-
metric gravitational field, andm(∞) = m0, which is expected by Mach’s principle.
To calculate the variation ratio of mass with respect tor , we can estimate the value
of b and discuss the physical meaning of the constantµ by using the result of
the post-Newton test in the 4D theory, and then obtain the specific expression of
the mass. We carry out the well-known coordinate transformation

ρ = 1

2
[r − µG+

√
r (r − 2µG)] (14)

The line element in an isotropic coordinate system can be written as (Dauidson
and Owen, 1985; Gross and Perry, 1983)

dS2 =
(

1− µG/2ρ

1+ µG/2ρ

)2a

dt2−
(

1− µG/2ρ

1+ µG/2ρ

)2(1−a−b)

×
(

1+ µG

2ρ

)4

[dρ2+ ρ2 dÄ2] −
(

1− µG/2ρ

1+ µG/2ρ

)2b

dl2 (15)

We carry out the Robertson expansions of the above coefficients, which are(
1− µG/2ρ

1+ µG/2ρ

)2a

= 1− 2a
µG

ρ
+ 2a2

(
µG

ρ

)2

+ · · ·

= 1− 2α
MG

ρ
+ 2β

(
MG

ρ

)2

+ · · ·
(

1− µG/2ρ

1+ µG/2ρ

)2(1−a−b) (
1+ µG

2ρ

)4

= 1+ 2(a+ b)
µG

ρ
+ · · ·

= 1+ 2γ
MG

ρ
+ · · · (16)

whereα = aµ/M, β = (aµ/M)2, andγ = (a+ b)µ/M are three post-Newtonian
parameters, andM is the mass of the source of the gravitational field. According
to the definition ofM, we should setα = 1. Then we haveβ = 1, γ = 1+ b/a.
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The 4D Einstein theory givesα = β = γ = 1, which corresponds to the case
b→ 0 anda→ 1. The experimental result of the “time delay” of radar signals
givesγ = 1.000± 0.002 (Reasenberget al., 1979). We take the upper limit of
the value ofγ (b/a ≈ 0.002) and haveb = 0.002 anda = 0.999 orb = −0.002
anda = −0.999. We should point out that the solution withb = 0.002 slightly
diverges from the vacuum field equation. This can be explained by the fact that the
energy–momentum tensor of the scalar field is also the part of the source of the
gravitational field.

To check if the result is reasonable, consider how the gravitational field on
the surface of the earth affects a neutralπ meson. Puttingb = ±0.002, a =
±0.999, M = 5.977× 1024 kg, r = 6.370× 106 m, andm0 = 2.405× 10−28 kg
into the expression (13) gives massm≈ [1+ bµG/(c2r )] m0 ≈ [1± 1.39×
10−12] m0, which is hardly different fromm0 (= m(∞)) and does not conflict
with the present observational data.

Second, we merely discuss the standard Friedman model withk = 0 in detail.
Consider the following class of cosmological solution, which seems like a plane
wave propagating in the fifth dimension (Liu and Wesson, 1994).

dS2 = A−(1+3γ ) dt2− A2(dr2+ r 2 dÄ2)− A−(1+3γ ) dl2

A = (Hu)
1

2+3r

p = γρ 8πρG = 3H2

(2+ 3γ )2A3(1+γ )
(17)

HereH = α(2+ 3γ ) is a parameter with physical dimensions ofT−1 or L−1 and
u = t − l . For a free particle, we still write9(x, l ) = Aωeimo(l−t), whereω is a
determinable parameter. Coupling (11) with (17) gives the mass of a test particle

m2 = A(1+3γ )

{[
m2

0−
(7+ 3γ )ȦȦ

ω

2AAω
− Äω

Aω

]
+ im0

[
(7+ 3γ )Ȧ

2A
+ 2Ȧ

ω

Aω

]}

+ 1

48
R(4)+ 3

16
gαβR4

α4β −
3

16
A(1+3γ ) Rα4α4 (18)

Here an overdot denotes the derivative with respect tou. To makem2 real, we set
the second term on the right-hand side to zero, giving usω = − (7+ 3γ )/4. Then
finally (18) becomes

m2 = (Hu)
1+3γ
2+3γ

[
m2

0−
(7+ 3γ )(1+ 9γ )

16(2+ 3γ )2
(Hu)−2H2

]
+ 1

48
R(4)+ 3

16
gαβR4

α4β −
3

16
(Hu)

1+3γ
2+3γ Rα4α4 (19)
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So for late times we have (tÀ l )u ≈ t . Carrying out the coordinate transformation

Ht = (H0T)
2(2+3γ )
3(1+γ ) H0 = 3(1+ γ )

2(2+ 3γ )
H (20)

We have the line element in the comoving coordinate system

dS2 = dT2− R2(dr2+ r 2 dÄ2)− φ2 dl2

R = (H0T)
2

3(1+γ ) φ = (H0T)−
(1+3γ )
3(1+γ ) (21)

HereT is the proper time of the universe. The mass is

m2 = (H0T)
2(1+3γ )
3(1+γ )

[
m2

0−
(7+ 3γ )(1+ 9γ )

36(1+ γ )2
(H0T)−

4(2+3γ )
3(1+γ ) H2

0

]
+ 1

48
R(4)+ 3

16
gαβR4

α4β −
3

16
(H0T)

2(1+3γ )
3(1+γ ) Rα4α4 (22)

Then we will discuss in detail the two special cases: the later universe (γ = 0) and
the early universe (γ = 1/3), and calculate the variation ratio of the mass.

For the later (dust) universe (γ = 0), the line element and the mass are

dS2 ≈ dT2− (T H0)4/3(dr2+ r 2 dÄ2)− (T H0)−2/3 dl2 (23)

m2 = (H0T)2/3m2
0−

7

36
(H0T)−2/3H2

0 −
1

18
T−2 (24)

For the early (radiation-dominated) universe (γ = 1/3), the line element and the
mass are

dS2 ≈ dT2− (T H0)(dr2+ r 2 dÄ2)− (T H0)−1 dl2 (25)

m2 = (H0T)m2
0−

1

2
(H0T)−2H2

0 (26)

Obviously, in both the cases the mass of a particle may change with the proper time
of the universeT , which embodies the spirit of Mach’s principle. In order to calcu-
late the persent value of the mass variation and compare it with the observational
data we put the age of the universeT ∼ 1010 year and Hubble’s constantH0 ∼
(1010 year)−1. In the matter-dominated age, the variation ratio of a spin-0 neutral
π meson (m0 = 2.405× 10−28 kg) is (dm/dT)/m≈ 3.333× 10−11 year−1,
which is in agreement with the result calculated by Shapiroet al. (1971) and
does not conflict with the observations.

5. CONCLUSION

We have built the 5D conformally invariable Klein-Gordon equation, which
can be reduced to the normal 4D space–time to obtain the effective 4D variable mass
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of a test particle. We check this in detial for the cases of the static and spherically
symmetric gravitational field and the Friedman universe. The results don’t conflict
with both experimental data in weak-field approximation and the present variation
ratio of a particle mass. These results are very interesting from Mach’s point of
view. In the minimally coupled case, the Klein-Gordon equation also gives the
general conclusion of the variable mass (Liu and Wesson, 2000); however, it is
constant for the Schwarzschild and late-universe cases, which does not embody
the spirit of Mach’s principle. The 5D conformally invariable scalar field equation
makes up the cases. Perhaps the conformally invariable Klein-Gordon equation in
many generalized forms is the most ideal.
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